Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
نویسندگان
چکیده
If patient-specific finite element models of the spine could be developed, they would offer enormous opportunities in the diagnosis and management of back problems. Several generic models have been developed in the past, but there has been very little detailed examination of the sensitivity of these models' characteristics to the input parameters. This relationship must be thoroughly understood if representative patient-specific models are to be realized and used with confidence. In particular, the performance of the intervertebral discs are central to any spine model and need detailed investigation first. A generic non-linear model of an intervertebral disc was developed and subjected to compressive, flexion and torsional loading regimes. The effects of both material and geometric non-linearities were investigated for the three loading schemes and the results compared with experimental data. The basic material properties of the fibres, annulus and nucleus were then varied and the effects on the stiffness, annulus bulge and annulus stresses analysed. The results showed that the non-linear geometry assumption had a significant effect on the compression characteristics, whereas the non-linear material option did not. In contrast, the material non-linearity was more important for the flexural and torsional loading schemes. Thus, the inclusion of non-linear material and geometry analysis options in finite element models of intervertebral discs is necessary to predict in vivo load-deflection characteristics accurately. When the influence of the material properties was examined in detail, it was found that the fibre properties did not have a significant effect on the compressive stiffness of the disc but did affect the flexural and torsional stiffnesses by up to +/-20 per cent. All loading modes were sensitive to the annulus properties with stiffnesses varying by up to +/-16 per cent. The model also revealed that for a particular compressive deformation or flexural or torsional rotation, the disc bulge was not sensitive to any of the material properties over the range of properties considered. The annulus stresses did differ significantly as the material properties were varied (up to 70 per cent under a compressive load and 60 per cent during disc flexion).
منابع مشابه
Estimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study
Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...
متن کاملA novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties
The Ovine spine is an accepted model to investigate the biomechanical behaviour of the human lumbar one. Indeed, the use of animal models for in vitro studies is necessary to investigate the mechanical behaviour of biological tissue, but needs to be reduced for ethical and social reasons. The aim of this study was to create a finite element model of the lumbar intervertebral disc of the sheep t...
متن کاملBiomechanical Effects of Spinal Flexibility and Rigidity on Lumbar Spine Loading: A Finite Element Analysis Study
Objective: The effects of spinal rigidity correlate positively with low back pain. Although spine flexibility has also been considered important for preventing stress-related lumbar disorders, the effects of spinal rigidity on mechanical stress during lumbar motion have rarely been reported. Methods: A biomechanical investigation and finite element analysis were conducted to elucidate the effec...
متن کاملRegional annulus fibre orientations used as a tool for the calibration of lumbar intervertebral disc finite element models.
The collagen network of the annulus fibrosus largely controls the functional biomechanics of the lumbar intervertebral discs (IVDs). Quantitative anatomical examinations have shown bundle orientation patterns, possibly coming from regional adaptations of the annulus mechanics. This study aimed to show that the regional differences in annulus mechanical behaviour could be reproduced by consideri...
متن کاملSignificance of the collagen criss-cross angle distributions in lumbar annuli fibrosi as revealed by finite element simulations
In the human lumbar spine, annulus fibrosus (AF) fibres largely contribute to intervertebral disc (IVD) stability, and detailed annulus models are required to obtain reliable predictions of lumbar spine biomechanics by finite element (FE) modelling. However, different definitions of collagen orientation coexist in the literature for healthy human lumbar AFs and are indiscriminately used in mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
دوره 216 5 شماره
صفحات -
تاریخ انتشار 2002